• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Passer au pied de page
  • TW
  • YT
  • FAQ
  • Contact

M-Cube

MetaMaterials antenna for ultra-high field Mri

MetaMaterials antenna
for ultra-high field Mri
  • The Project
  • Partners
  • Publications
    • Scientific Articles
    • Open Data
    • HAL
  • Press release
  • Events
  • Jobs
  • Videos
Accueil › Scientific publications › Systematic Analysis of the Improvements in Magnetic Resonance Microscopy with Ferroelectric Composite Ceramics

Systematic Analysis of the Improvements in Magnetic Resonance Microscopy with Ferroelectric Composite Ceramics

mai 21, 2019

“Systematic Analysis of the Improvements in Magnetic Resonance Microscopy with Ferroelectric Composite Ceramics”, Marine A. C. Moussu, Luisa Ciobanu, Sergej Kurdjumov, Elizaveta Nenasheva, Boucif Djemai, Marc Dubois, Andrew G. Webb, Stefan Enoch, Pavel Belov, Redha Abdeddaim, Stanislav Glybovski, Advanced Material,  May 2019

https://doi.org/10.1002/adma.201900912

Abstract
The spatial resolution and signal‐to‐noise ratio (SNR) attainable in magnetic resonance microscopy (MRM) are limited by intrinsic probe losses and probe–sample interactions. In this work, the possibility to exceed the SNR of a standard solenoid coil by more than a factor‐of‐two is demonstrated theoretically and experimentally. This improvement is achieved by exciting the first transverse electric mode of a low‐loss ceramic resonator instead of using the quasi‐static field of the metal‐wire solenoid coil. Based on theoretical considerations, a new probe for microscopy at 17 T is developed as a dielectric ring resonator made of ferroelectric/dielectric low‐loss composite ceramics precisely tunable via temperature control. Besides the twofold increase in SNR, compared with the solenoid probe, the proposed ceramic probe does not cause static‐field inhomogeneity and related image distortion.

CNRS INSIS also published this information in his newsletter “En direct des labos” under the title “Une antenne en céramique améliore la qualité des images par résonance magnétique”

mai 21, 2019

Barre latérale principale

Twitter

Tweets by MCUBE19

Last video

Aucune vidéo correspondant

Footer

  • Contact
  • FAQ
  • Legal Notice
  • Credits
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 736937