• Passer à la navigation principale
  • Passer au contenu principal
  • Passer à la barre latérale principale
  • Passer au pied de page
  • TW
  • YT
  • FAQ
  • Contact

M-Cube

MetaMaterials antenna for ultra-high field Mri

MetaMaterials antenna
for ultra-high field Mri
  • The Project
  • Partners
  • Publications
    • Scientific Articles
    • Open Data
    • HAL
  • Press release
  • Events
  • Jobs
  • Videos
Accueil › Scientific publications › Measuring radiofrequency field‐induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring in Magnetic Resonance in Medicine

Measuring radiofrequency field‐induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring in Magnetic Resonance in Medicine

novembre 16, 2021

Measuring radiofrequency field-induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring in Magnetic Resonance in Medicine ; Caroline Le Ster, Franck Mauconduit, Christian Mirkes, Alexandre Vignaud, Nicolas Boulant, published on 22 October 2021

http://doi.org/10.1002/mrm.29058

 

Purpose : An MR thermometry (MRT) method with motion and field fluctuation compensation is proposed to measure non-invasively sub-degree brain temperature variations occurring through radiofrequency (RF) power deposition during MR exams.

Methods : MRT at 7T with a multi-slice echo planar imaging (EPI) sequence and concurrent field monitoring was first tested in vitro to assess accuracy in the presence of external field perturbations, an optical probe being used for ground truth. In vivo, this strategy was complemented by a motion compensation scheme based on a dictionary pre-scan, as reported in some previous work, and was adapted to the human brain. Precision reached with this scheme was assessed on eight volunteers with a 5 minute-long low specific absorption rate (SAR) scan. Finally, temperature rise in the brain was measured twice on the same volunteers and with the same strategy, this time by employing a 20-minutes scan at the maximum SAR delivered with a commercial volume head coil.

Results : In vitro, the root mean square (RMS) error between optical probe and MRT measurements was 0.02°C with field sensor correction. In vivo, the low SAR scan returned a precision in temperature change measurement with field monitoring and motion compensation of 0.05°C. The 20-minutes maximum SAR scan returned a temperature rise throughout the inner-brain in the range of 0–0.2°C. Brain periphery remained too sensitive with respect to motion to lead to equally conclusive results.

Conclusion : Sub-degree temperature rise in the inner human brain was characterized experimentally throughout RF exposure. Potential applications include improvement of human thermal models and revision of safety margins.

Partners :  CEA Neurospin

Keywords : MR thermometry, radiofrequency

 

novembre 16, 2021

Barre latérale principale

Twitter

Tweets by MCUBE19

Last video

H2020 FET Project M-Cube Final review - Metamaterials Antenna for Ultra-High Field MRI
  • « prec.
  • 1
  • 2
  • 3
  • suiv. »
H2020 FET Project M-Cube Final review - Metamaterials Antenna for Ultra-High Field MRI
Titre
H2020 FET Project M-Cube Final review - Metamaterials Antenna for Ultra-High Field MRI
Runtime
3:11
Date de publication
Jul 30, 2021
Description
A look back at the four years of the M-CUBE project (2017-2021). The videos and ...
European Project M-CUBE
Titre
European Project M-CUBE
Runtime
4:06
Date de publication
Mar 9, 2021
Description
Le projet de recherche M-CUBE est un FET-Open financé par la Commission Europé...
Interview Denis Tihon Ph.D.
Titre
Interview Denis Tihon Ph.D.
Runtime
1:08
Date de publication
Mar 5, 2021
Description
Presentation of Denis TIHON, PhD, Teaching assistant in Université Catholique d...
M-CUBE project - with DANISH subtitles -  MetaMaterials antenna for ultra-high field MRI
Titre
M-CUBE project - with DANISH subtitles - MetaMaterials antenna for ultra-high field MRI
Runtime
2:00
Date de publication
Sep 26, 2019
Description
M-Cube project, entitled “MetaMaterials antenna for ultra-high field MRI” is...
Proyecto M-CUBE - Antena de MetaMaterial para la IRM (English with SPANISH subtitles)
Titre
Proyecto M-CUBE - Antena de MetaMaterial para la IRM (English with SPANISH subtitles)
Runtime
2:00
Date de publication
Sep 26, 2019
Description
Este video de 2 min es accesible a todo publico y es destinado a la difusión ci...
M-CUBE project - with FINNISH subtitles -  MetaMaterials antenna for ultra-high field MRI
Titre
M-CUBE project - with FINNISH subtitles - MetaMaterials antenna for ultra-high field MRI
Runtime
2:00
Date de publication
Sep 26, 2019
Description
M-Cube project, entitled “MetaMaterials antenna for ultra-high field MRI” is...
Проект MCube  - Антенны на основе метаматериалов для сверхвысокопольной МРТ. (Russian subtitles)
Titre
Проект MCube - Антенны на основе метаматериалов для сверхвысокопольной МРТ. (Russian subtitles)
Runtime
2:00
Date de publication
Sep 26, 2019
Description
Проект MCube, под названием "Антенны на основе ...
M-CUBE project - with ENGLISH subtitles - MetaMaterials antenna for ultra-high field MRI
Titre
M-CUBE project - with ENGLISH subtitles - MetaMaterials antenna for ultra-high field MRI
Runtime
2:00
Date de publication
Sep 26, 2019
Description
M-Cube project, entitled “MetaMaterials antenna for ultra-high field MRI” is...
M-CUBE Project - with DUTCH subtitles - MetaMaterials antenna for ultra-high field MRI
Titre
M-CUBE Project - with DUTCH subtitles - MetaMaterials antenna for ultra-high field MRI
Runtime
2:00
Date de publication
Sep 26, 2019
Description
M-Cube project, entitled “MetaMaterials antenna for ultra-high field MRI” is...
M-CUBE sous-titrée en FRANÇAIS - Méta-matériaux pour les antennes IRM haut-champ et ultra-haut champ
Titre
M-CUBE sous-titrée en FRANÇAIS - Méta-matériaux pour les antennes IRM haut-champ et ultra-haut champ
Runtime
2:00
Date de publication
Sep 26, 2019
Description
Le projet M-Cube pour “MetaMaterials antenna for ultra-high field MRI” est l...

Footer

  • Contact
  • FAQ
  • Legal Notice
  • Credits
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 736937